

 Navigation

 	
 index

 	Flint 1.7.1-3-g1f64b90
 documentation

Flint

Flint is a microframework built on top of Silex. It tries to bridge the gap between Silex and
Symfony by bringing structure and conventions to Silex.

Getting started

To start using Flint the easiest way is to edit your
composer.json file to require Flint and change the Application class
that is used.

$ php composer.phar require flint/flint:~1.0

<?php

use Flint\Application;

$application = new Application($rootDir, $debug);

It is recommended to subclass Flint\Application instead of using the
application class directly.

Controllers

Flint tries to make Silex more like Symfony. And by using closures it is
hard to separate controllers in a logical way when you have more than a
couple of them. To make it better it is recommended to use classes and
methods for controllers. The basics are explained
here [http://silex.sensiolabs.org/doc/usage.html#controllers-in-classes]
but Flint takes it further and allows the application to be injected
into a controller.

The first way to accomplish this is by implementing
PimpleAwareInterface or extending PimpleAware. This works
exactly as described in
Symfony [http://symfony.com/doc/2.0/book/controller.html#the-base-controller-class].
With the only exception that the property is called $pimple instead
of $container.

<?php

namespace Acme\Controller;

use Flint\PimpleAware;

class HelloController extends PimpleAware
{
 public function indexAction()
 {
 return $this->pimple['twig']->render('Hello/index.html.twig');
 }
}

Another way is to use a base controller which have convenience methods
for the most frequently used services. These methods can be seen in the
source code if you look at the implementation for
Flint\Controller\Controller.

<?php

namespace Acme\Controller;

use Flint\Controller\Controller;

class HelloController extends Controller
{
 public function indexAction()
 {
 return $this->render('Hello/index.html.twig');
 }
}

Routing

Because Flint replaces the url matcher used in Silex with the full
router implementation a lot of new things are possible.

Caching is one of those things. It makes your application faster as it
does not need to register routes on every request. Together with loading
your routes from a configuration file like Symfony it will also bring
more structure to your application.

To enable caching you just need to point the router to the directory you
want to use and if it should cache or not. By default the debug
parameter will be used as to determine if cache should be used or not.

<?php

// .. create a $app before this line
$app['routing.options'] = array(
 'cache_dir' => '/my/cache/directory/routing',
);

Warning

Migrating from Silex

Flint automatically enables UrlGeneratorServiceProvider therefor it is
not needed to do this manually.

Before it is possible to use the full power of caching it is needed to
use configuration files because Silex will always call add routes via
its convenience methods get|post|delete|put. Fortunately this is
baked right in.

<?php

// .. create $app
$app['routing.resource'] = 'config/routing.xml';

<!-- config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="homepage" pattern="/">
 <default key="_controller">Acme\\Controller\\DefaultController::indexAction</default>
 </route>
</routes>

This will make the router load that resource by default. Here xml is
used as an example but php is also supported together with yml
if Symfony\Component\Yaml\Yaml is autoloadable.

The benefit from doing it this way is of course they can be cached but
also it allows you to import routing files that are included in
libraries and even other Symfony bundles such as the
WebProfilerBundle [https://github.com/symfony/webprofilerbundle].

The WebProfilerBundle routes must be imported into your routing file if you intend on using it.
Here’s an example of what your routing file may look like in YAML format:

_profiler:
 resource: "/path/to/vendor/symfony/web-profiler-bundle/Symfony/Bundle/WebProfilerBundle/Resources/config/routing/profiler.xml"
 type: xml
 prefix: /_profiler

_wdt:
 resource: "/path/to/vendor/symfony/web-profiler-bundle/Symfony/Bundle/WebProfilerBundle/Resources/config/routing/wdt.xml"
 type: xml
 prefix: /_wdt

Also it will make it easier to generate routes from inside your views.

Homepage

This is also possible with Silex but with a more verbose syntax. The
syntax can be even more precise by using the twig functions that is
available in the Twig bridge for Symfony. To enable those add the twig
bridge to your composer file.

{
 "require" : {
 "symfony/twig-bridge" : "~2.0"
 }
}

Now it is possible to use the functions inside your Twig templates.

Homepage
Homepage

Default Parameters

The two constructor arguments $rootDir and $debug are also
registered on the application as parameters. This makes it easier for
services to add paths for caching, logs or other directories.

<?php

$app = new Flint\Application(__DIR__, true);
$app['debug'] === true;
$app['root_dir'] === __DIR__;

Custom Error Pages

When finished a project or application it is the small things that
matter the most. Such as having a custom error page instead of the one
Silex provides by default. Also it can help a lost user navigate back.
Flint makes this possible by using the exception handler from Symfony
and a dedicated controller. Both the views and the controller can be
overridden.

This will only work when debug is turned off.

To override the error pages the same logic is used as inside Symfony.
The logic is very well described in their
documentation [http://symfony.com/doc/master/cookbook/controller/error_pages.html].

Only difference from Symfony is the templates must be created inside
views/Exception/ directory. Inside the templates there is access to
app which in turns gives you access to all of the services defined.

To override the controller used by the exception handler change the
exception_controller parameter. This parameter will by default be
set to Flint\\Controller\\ExceptionController::showAction.

<?php

// .. create $app
$app->inject(array(
 'exception_controller' => 'Acme\\Controller\\ExceptionController::showAction',
));

To see what parameter the controller action takes look at the one
provided by default. Normally it should not be overwritten as it already
gives a lot of flexibility with the template lookup.

Pimple Console

Helper

Flint have a helper that provides access to a pimple instance or in the case of Flint access to you application
object.

<?php

class SomeCommand extends Command
{
 public function execute(InputInterface $input, OutputInterface $output)
 {
 $pimple = $this->getHelperSet()->get('pimple');
 }
}

To register the helper do this.

<?php

$app = new Symfony\Component\Console\Application;
$app->getHelperSet()->set(new Flint\Console\PimpleHelper($pimple));

Application

Warning

This is deprecated and it is adviced to use Flint\Console\PimpleHelper instead.

Flint\Console\Application is an extension of the base console
application shipped with Symfony. It gives access to Pimple in commands.

<?php

namespace Application\Command;

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class MyCommand extends \Symfony\Component\Console\Command\Command
{
 protected function execute(InputInterface $input, OutputInterface $output)
 {
 $pimple = $this->getApplication()->getPimple();
 }
}

Configuration

Every application need to have some parameters configured based on environment or other parameters.
Flint comes with a Configurator which reads json files and sets them as parameters on your application.

<?php

use Flint\Application;

$app = new Application($rootDir, $debug);
$app->configure('config.json');

// Or use the service directly
$app['configurator']->configure($app, 'app/config/prod.json');

Note

For more information about how configuration loading works read the Tacker documentation [http://tacker.rtfd.org].

Warning

When using Silex version 1.0.0 or earlier it is not possible to load configurations in the boot method. This is because
when adding a listener to the dispatcher service it will get the routes and a bunch of other services which means it
is too late.

 Copyright 2013, Henrik Bjrnskov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Flint 1.7.1-3-g1f64b90
 documentation

Index

 Copyright 2013, Henrik Bjrnskov.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		
 index

 		Flint 1.7.1-3-g1f64b90
 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Henrik Bjrnskov.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/peytzco.jpg
peytz&co

_static/file.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

